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Explicit integration usually timestep limited by numerical

stability

x=-yx, yERy



Explicit integration usually timestep limited by numerical

stability

Xn+1 — Xn
T — X,



Explicit integration usually timestep limited by numerical

stability

X = (1= hv)"x0



Explicit integration usually timestep limited by numerical

stability

xn=(1-h7)"x0

Numerical instability when h~ > 2 )




Implicit integration removes this stability barrier.

Xp+1 — Xn
h = =7 Xn+1



Implicit integration removes this stability barrier.

TRy



Implicit integration removes this stability barrier.

1
SR T
Stable for all (non-negative) timesteps h! J




But stability does not imply large timestep accuracy!

Xn+1 — Xn

h = =7 Xn+1 — h* 75 (Xn+1 - 5)

Same formal accuracy as BWD Euler for hy < 1 J




But stability does not imply large timestep accuracy!

Xn

_ X0 +5 h®~5 1—(1+hy+hA5)"
(L+ hy+ h>~3)" 1+hy+h~5)1—(1+hy+h>A5)1



But stability does not imply large timestep accuracy!

Xpn =

X0 L5 h®~5 1—(1+hy+ h45)n
(L+ hy+ h>A5)" 1+hy+h~5) 1 —(1+hy+ hA5)"1
~5h*y* <1 asn— oo

When h~ <« 1, reasonable large-n behavior J




But stability does not imply large timestep accuracy!

. X0 +5 h® 1—(1+hy+hA%)"
T (14 hy 4 hBAP)n 1+hy+h~5) 1 —(1+hy+ hA5)"1
~b asn— oo
When h~ > 1, nonsensical large-n behavior )




Large timesteps: a leap of faith?




Large timesteps: a leap of faith?

How can one step over timescales without sacrificing accuracy? [




This talk will suggest an answer.

(1) Identify your c'-time system'’s temporal
multi-scale structure

(2) Develop a discrete-time analogue of that
structure

(3) Design implicit scheme using discrete structure
as a constraint



This talk will suggest an answer.

Why?

(1) Develop a precise picture of interplay between
short and long timescales in c* time

(2) Understand how much of that interplay is
reproducible in discrete time

(3) Use c®-time analytical methods for numerical
analysis



Part |: fast-slow maps



Fast-slow systems embody most fundamental multi-scale
structure

Definition 1: (fast-slow system)

A fast-slow system is a (possibly infinite-dimensional) ODE on
X XY 3 (x,y) of the form

)-/ = fE(Xay)
X = ege(x,y)7

where f.(x, y), ge(x, y) are smooth in (x, y,€) and
o For each x there is a unique y = y§(x) that solves fo(x,y) =0

@ The linear map D, fo(x, y5(x)) : Y — Y is invertible for each
xeX

x is slow variable, y is fast variable |




Different limiting fast-variable phase portraits

o W@

Center Stable node (sink) Stable spiral

434 (o)

Saddle point Unstable node (source) Unsiable spiral




Fast-slow structure = existence of slow manifold

Theorem 1: (existence of slow manifolds; c'-time)
@ For each fast-slow system there is a unique formal power series
YE(x) = yo (%) + eyi(x) + € y3(x) + ...

such that the graph Sc = {(x,y) | y = y*(x)} is an invariant
manifold to all orders in e.

e Equivalently, y = y(x) provides a formally-exact closure of
the slow-variable evolution equations,

x = e ge(x, y (x)).

Slow manifold reduction of the fast-slow system J







Example:

\lczouicw{? The Vlasov-Poisson system ]
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Example:

The Vlasov-Maxwell system J The Vlasov-Poisson system ]
Oif +v-Vf+S2F-V,f=0 Of +v-Vf+2F.-V,f=0
F=E+c'vxB

F=-V¢, A¢p= —47re/fd3V
0tB=—cV x E
OtE:47r/vfd3v—cV>< B
e Fast-slow with x = (f, E;),
y=(B,Er), e=c! Of +v-VF+a.-V,f=0
@ Vlasov-Poisson is 0t-order m
slow manifold reduction

The Vlasov-Darwin system J

F=-V¢—cloA

1
o +c 'vxVxA
@ Vlasov-Darwin is 1%t-order

slow manifold reduction Ap = —47T€/ Fdiv—c1vV.0,A

G. Miloshevich and J. W. Burby, J. Plasma Phys. (2021,

in-press) cV x V x A= 47T/ v fd3V — V8t¢
I



Fast-slow maps = discrete-time fast-slow systems

Definition 2: (fast-slow map)

A fast-slow map on X x Y 3 (x,y) is a family of mappings
F’y X XY 5 X XY (X7y) = (¢7(Xay)7w7(x7y))
with vector parameter v such that

FO(X’y) = (X7 \UO(va))a

and
@ For each x € X there is a unique y = y§(x) that solves
Vo(x,y) =y
@ The linear map D, Wo(x, yi(x)) —1:Y — Y is invertible

J. W. Burby and T. J. Klotz, Commun. Nonlinear Sci. 89: 105289 (2020)



Discrete-time fast-slow structure = discrete-time slow
manifolds

Theorem 2: (existence of slow manifolds; discrete-time)

@ For each fast-slow map there is a unique formal power series
* * * 2 x
5 (x) = yo (%) + y1 (%) + € y3 [y, 710 + - ..

such that the graph S, = {(x,y) | y = y5(x)} is an invariant
manifold to all orders in .

o Equivalently, y = yJ(x) provides a formally-exact closure of
the slow-variable map,

X = ¢V(vaf>yk(x))

Slow manifold reduction of the fast-slow map

J. W. Burby and T. J. Klotz, Commun. Nonlinear Sci. 89: 105289 (2020)



Example 1:
@ Variational IMEX discretization of Vlasov-Maxwell defines
fast-slow map for ¢ < h < 1. Discrete-time slow manifold
recovers:

o Oth-order in e: 2"-order scheme for Vlasov-Poisson
o 15t-order in e: 2"-order scheme for for Vlasov-Darwin

4 2
"5 15 (h(EY) + Sk, S )
ma

T+ (h5)2 -1 T
Ev T2 Ay Z
a

(ho)>

+C2

AT ame,ls (V- [vava Se,]) + 0(+°)

* am — *
B = (hd)-— A, Y1) eslf (vaSx,) + O(7°)

J. W. Burby, APS-DPP Poster, (2019), http://meetings.aps.org/link/BAPS.2019.DPP.CP10.15, LA-UR-19-30654



c'-time slow manifold

2 2
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47
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Discrete-time slow manifold
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Example 2:

Lorentz loop dynamics

Phase space loop of magnetized charged particles evolves
according to

0.0, 1) + - |B(x(1))| 059(0, ) =

a | =

v (0,t) x B((0,1))

0:%(0, £) + %]B(Y(t))] 0%(0, ) = (0, )







Proposition:

Phase space loop dynamics is a fast-slow system.

Theorem:

Slow manifold reduction of loop dynamics, x = ge(x, y(x)),
describes the dynamics of a single guiding center

(10V|B| + b - Vb) x b
B

VB and curvature drifts

L0000 -6
VE v

( ve

J. W. Burby, “Guiding center dynamics as motion on a formal slow manifold in loop space,” J. Math. Phys.
61:012703 (2020)

+0(€?)

X =ub—c¢

—_—

iy



Example 2:

@ Implicit midpoint for Lorentz loop dynamics defines fast-slow
map for h > 27 /we:
o discrete-time slow manifold recovers integrator for
guiding center dynamics

V B-dominant = ccw azimutal motion

B-fine:
0300 c 2 22) i
0290 /
0280 V\ _\/)/'/A —
IC: (%,¥,2, 1, wi, ws) = (0,.3,0,1,2,0)
h=5x10"2 ¢=10""*

J. W. Burby, “Integrating guiding center motion in loop space,” Courant Institute Invited Talk: LA-UR-19-2276
(2019)




Example 2:

Lorentz-Pauli dynamics
The Lorentz-Pauli system is the ODE

1
v=—uV|B|+ oV X B(x)
X=v

where © > 0 is a parameter.

Proposition: (Xiao-Qin)
The Lorentz-Pauli system is fast-slow. The slow manifold reduction
recovers guiding center dynamics with magnetic moment .

V.

J. Xiao and H. Qin, “Slow manifolds of classical Pauli particle enable structure-preserving geometric algorithms for
guiding center dynamics,” Comp. Phys. Commun. 265:107981 (2021)



Proposition:

Boris discretization of Lorentz-Pauli defines a fast-slow map for
e<h<1l (06=¢/h)

1
O(Vip1/2 = Vi—1/2) = E(Vk+1/2 + Vi—1/2) X B(x«)

(Xk — xk—1) = hvi_1)2

The numerical experiments are in the simplified tokamak field as described in Ref. 2

The potentials are

A2 = 18y (e og(R)e. + (18)
2,3,2) = 3By ( 30~ lon(RJe. + spen) »
b(@y,2) =0, (19)
where
R=rya?+y2,r=\/(R—1)"+22, (20)
0 0 0 0 0 0 0 0 Yy T z Yy
T b2 16 T 16 106 167 16 ==L, 20 on= (5, L), )

J. Xiao and H. Qin, “Slow manifolds of classical Pauli particle enable structure-preserving geometric algorithms for
guiding center dynamics,” Comp. Phys. Commun. 265:107981 (2021)



But sometimes slow manifolds are not enough!

Xiao-Qin integrator performance in realistic fields

le-1 le—2
m— GCRK4,  dt=1e7 (s)
= Pauli-Boris, dt=1e-7 (s) = GC-RK4, dt=le-7 (s) / Pauli-Boris, dt=1e-7 :s)
—— Ppauli-Boris, dt=1¢-8 (s) 4 Pauli-Boris, dt=1e-7 (s) — Pauli-Boris, dt=1¢-8 (5)
20 = Pauli-Boris, dt=1e-8 (s) -

)
‘ M.. )
s ‘

' o
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g =
I E o0
i 10
-2 ;
‘l ﬂ
05 d
-4
‘ -10
00
-6 -15
0o os 10 15 20 00 05 10 15 200 100 125 150 175 200 225
time (s) le-3 time (s) 1e-3 R (m)

T. =3.14 x 1078, DIII-D shot 66832 at 2384 ms




Part 2: nearly-periodic maps



Nearly-periodic systems limit to periodic flows

Definition 3: (nearly-periodic system)

An ODE z = V,(z) is a nearly-periodic system if
e V,(z) is smooth in (z,¢€)
e Each trajectory of z = Vj(z) is periodic with
nowhere-vanishing angular frequency wo(z)




Nearly-periodic systems limit to periodic flows

0

Stable node (sink) Stable spiral

A3 (®)

Saddle point Unstable node (source) Unsitable spiral




nearly-periodic structure = existence of U(1)-symmetry

Theorem 3: (all-orders U(1) symmetry)

Each nearly-periodic system admits a formal U(1)-symmetry.
Equivalently, there is a power series vector field
R. = Ro +€R; + ... such that

e Ry = Vo /wo
@ [R., V] =0 to all-orders in €
e exp(2rLr.) =id

R. is called the roto-rate. It is unique! )

M. Kruskal, “Asymptotic theory of Hamiltonian and other systems with all solutions nearly periodic,” J. Math. Phys.
3: 806 (1962)



nearly-periodic structure = existence of U(1)-symmetr

Corollary: (adiabatic invariance)

If a nearly-periodic system z = V,(z) is also Hamiltonian, then it
admits an adiabatic invariant. Equivalently, there exists a
power-series scalar function pe = po + € 41 + ... such that

‘CVE/’LE = 0

to all-orders in e.

v

M. Kruskal, “Asymptotic theory of Hamiltonian and other systems with all solutions nearly periodic,” J. Math. Phys.
3: 806 (1962).

J. W. Burby and J. Squire, “General formulas for adiabatic invariants in nearly periodic Hamiltonian systems,” J.
Plasma Phys. 86: 835860601 (2020).



Example:

Proper-time Lorentz force dynamics

A magnetized charged particle’s 4-position R and 4-velocity V/
evolve according to

dVv dR
Y _FRrR)V, L _cv
dr Y =\

where 7 is the proper time and F is the Faraday tensor.

Proposition:

| A\

Proper-time Lorentz force dynamics is nearly periodic. The limiting
flow map is

(R, V)~ (R, PV + [cos O + sinOFy/wo| Py V)

where wg = \/—tr(FZ)/2 and 6 = Twy.

v

J. W. Burby and E. Hirvijoki, “Normal stability of slow manifolds in nearly-periodic Hamiltonian systems,” J. Math.
Phys. (2021, submitted, arXiv:2104.02190)




Nearly-periodic maps limit to rotations along circles

Definition 4: (nearly-periodic map)

A mapping F, : Z — Z with vector parameter 7y is a
nearly-periodic map if there is a U(1)-action &y : Z — Z and an
angle 6y € U(1) such that

Fo = ®y,.

If 0o/(27) is rational, F, is resonant. Otherwise it is
non-resonant.




9'—>9+90

10 iterations

20 iterations 40 iterations

80 iterations
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Discrete nearly-periodic structure = discrete-time U(1)
symmetry

Theorem 4: (discrete-time all-orders U(1) symmetry)

Each non-resonant nearly-periodic map F, admits a formal U(1)
symmetry. Equivalently, there exists a power-series vector field
Re = Ro + Ri[y] + R2[v,7] + - .. such that

® Ro = 0p®p |90

o FYR, =R,

o exp(2rLp,) = id




Discrete nearly-periodic structure = discrete-time U(1)

symmetry

Corollary: (discrete-time adiabatic invariance)

If a non-resonant nearly-periodic map is also Hamiltonian* then it
admits an adiabatic invariant. Equivalently, there exists a power
series scalar function fiy = g + p1[y] + p2[y,7] + ... such that

pry(Fy(2)) = py(2) =0

to all orders in v for each z € Z.




Part |ll: Application to symplectic
integration



Symplectic integration preserves the geometry of phase

space for non-dissipative systems

p = _aqHa

Momentum
(=)
£

-2 -1 0 1 2
Position

g =0pH

Phase space geometry =
symplectic 2-form

dqk+1 N dpky1 = dqx N dpx



Symplectic integration preserves the geometry of phase

space for non-dissipative systems

Benefits of symplectic integration

@ numerical stability for many timesteps without introducing
dissipation

@ Noether's theorem in discrete time
@ reveals useful mechanisms that can be ported into
non-symplectic schemes
o e.g. Villasenor-Buneman current deposition for PIC
emerges naturally from symplectic PIC.
o This provides easy way to generalize V-B to irregular

meshes, higher-order finite elements, non-trivial particle
shape functions, even drift kinetics



Canonical symplectic integration is routine

p=—0gH, ¢=0,H

Famous example: Leapfrog

SPRINGER SERIES 3
IN COMPUTATIONAL MATHEMATICS

Geometric Numerical 1
H = — vV
Integration (a,p) 2|P| + V(q)

Structure-Preserving Gk+1 = Gk + hpri1 /2
Algorithms for Ordinary

Differential Equations Pk43/2 = Qk+1/2 — hoqV (qr+1)
Second Edition

@ Springer

Symplectic integration methods can also be used to build
symplectic neural networks

J. W. Burby, Q. Tang, R. Maulik, “Fast neural Poincaré maps for toroidal magnetic fields,” Plasma. Phys. Control.

Fusion 63: 024001 (2021



But non-canonical symplectic integration is notoriously

difficult
Non-canonical Hamiltonian systems
Zin(Z) = 8J'H(Z), wjj = —Wjj, 8,'ij + 8jwk; + akw,-j =0

non-canonical symplectic

canonical symplectic property property

dqk+1 N dpk+1

Wij(zk+1)dzli+1 A dziﬂ
= dqk N dpk

= w,-j(zk)dz,’; AN dz{(



But non-canonical symplectic integration is notoriously

difficult

Degenerate variational integrators for magnetic field line flow and @ Techn |q ues for buildi ng
g o o canonical symplectic
S schemes double dimension
EEIEEE] o e o eon s of phase space when

rones ABSTRACT . .

: sl mnybenets o ety e s applied to non-canonical

systems
o BIG PROBLEM: extra
dimensions = numerical
instabilities generically
o OPEN QUESTION: Can
these instabilities be
eliminated?

Physics of

quations, energy error and the preserva
nportant Hamiltonian systems encountered i physics-the f

of magnetic field lines and the guiding center motion of magnetized charged particles-resist

symplectic integration by conventional means because the dynamics are most naturally

formulated in coordinates. New al y ped using
the variational integration formalism; however, those integrators were found to admit

bilities due to their multistep character. T eliminates the

d therefore the paras de instabi

malism that we de



But non-canonical symplectic integration is notoriously

difficult

Examples:
@ Guiding center dynamics
o (collisionles) Vlasov-Maxwell
@ various forms of MHD
e MANY MORE!



These instabilities = drift away from discrete-time slow

manifold

Example: “non-canonical pendulum’

Separation from slow manifold trajectory
1.00

0.0008

0.0007 075

0.0006 050
c
-2 0.0005 4 0.25
8
=
7} i
]
< 0.0004 4 a 0004 |
£ i
S
=
~ 0.0003 4 —0.251
at

0.0002 —0.501

0.0001 -0.754

0.0000 1001

0 2 4 6 8 10 12 14 16 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Periods q

C. L. Ellison et al. Phys. Plasmas 25: 052502 (2018).



These instabilities = drift away from discrete-time slow

manifold

Example: “non-canonical pendulum”

Separation from slow manifold trajectory
1.0 1,001
0.754
0.8
p
0504 ™
506 0.25 1
&
>
<
= a2 0004 .
3
S04
3 -0.251
-0.50 "y
0.2 /
-0.75
00 ~1.004 -
0 250 500 750 1000 1250 1500 1750 2000 -1.00 -0.75 -0.50 —0.25 0.00 025 050 075 1.00
Periods q

C. L. Ellison et al. Phys. Plasmas 25: 052502 (2018).



Instabilities can be eliminated using nearly-periodic maps!

Theorem:

The generating function
1
S(qaa) = —hH + h6<XH’2_ Z> - §h25<XH7XH>

z 1 sin fp . _
+/z 19—4<1COS‘90><Z—Z—hXH,Z—Z—hXH>

defines a Hamiltonian nearly-periodic map on (z, z)-space. On the
zero level set ;1 = 0, the map induces a non-canonical symplectic
integrator for the non-canonical Hamiltonian system z = Xy(z).
Normal instabilities are impossible by discrete-time adiabatic
invariance.




Instabilities can be eliminated using nearly-periodic m

0.020

o
o
=
@

0.010

L2 Normal deviation

0.005

0.000

Separation from slow manifold

trajectory

1.00

0.75 4

0.50

0.25

o 0.004

-0.251

—0.50 1

—0.754

-1.004

[ 250 500 750 1000 1250 1500 1750 2000
Periods

-1.00 -0.75 -0.50 -0.25 0.00 025 050 0.75 1.00
q



Thank you!
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